Augmentation-Free Self-Supervised Learning on Graphs

Namkyeong Lee¹, Junseok Lee¹, Chanyoung Park^{1,2*}

Dept. of Industrial and Systems Engineering, KAIST, Daejeon, Republic of Korea ² Graduate School of Artificial Intelligence, KAIST, Daejeon, Republic of Korea namkyeong96@kaist.ac.kr, junseoklee@kaist.ac.kr, cy.park@kaist.ac.kr

Code: https://github.com/Namkyeong/AFGRL

AAAI 2022

- 1.Introduction
- 2.Method
- 3. Experiments

Introduction

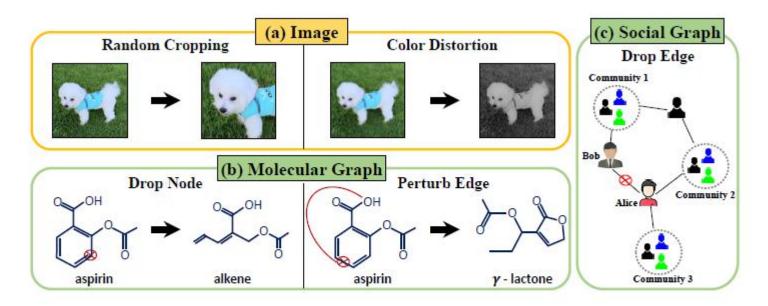


Figure 1: Augmentations on images ((a)) keep the underlying semantics, whereas augmentations on graphs ((b),(c)) may unexpectedly change the semantics.

Method

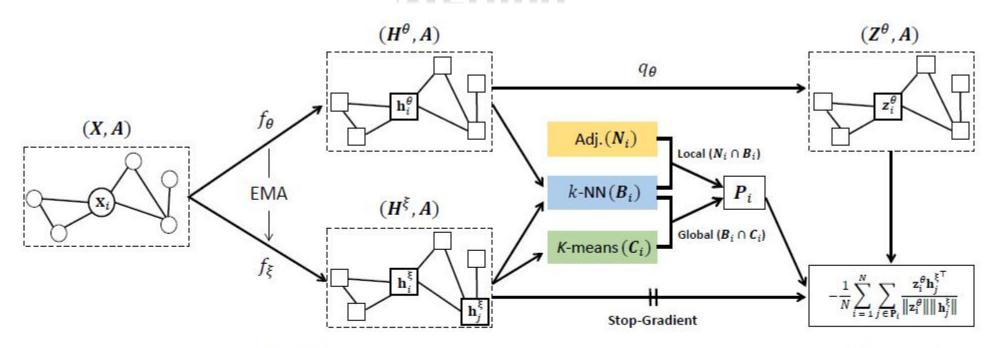
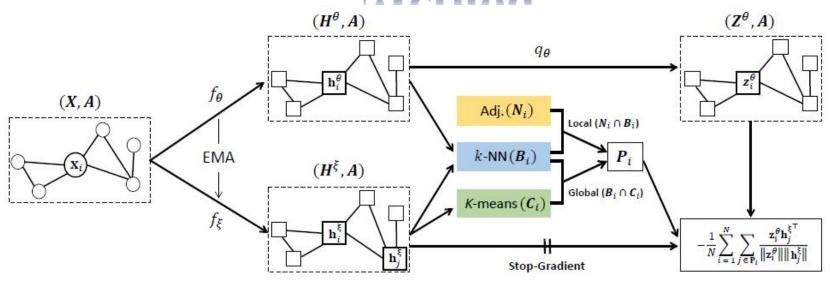
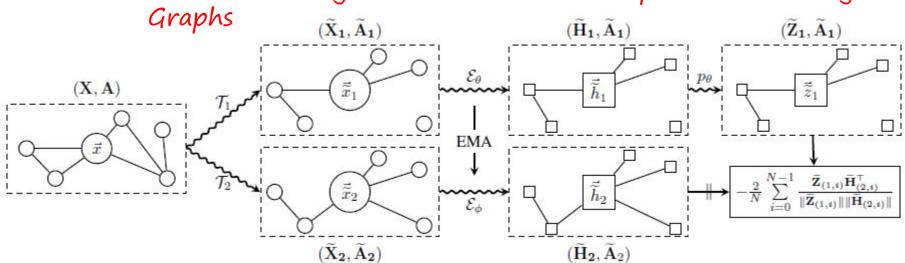


Figure 2: The overall architecture of AFGRL. Given a graph, f_{θ} and f_{ξ} generate node embeddings \mathbf{H}^{θ} and \mathbf{H}^{ξ} both of which are used to obtain k-NNs for node v_i , i.e., \mathbf{B}_i . Combining it with \mathbf{N}_i , we obtain local positives, i.e., $\mathbf{B}_i \cap \mathbf{N}_i$. To obtain global positives for node v_i , K-means clustering is performed on \mathbf{H}^{ξ} , and the result \mathbf{C}_i is combined with \mathbf{B}_i , i.e., $\mathbf{B}_i \cap \mathbf{C}_i$. Finally, we combine local and global positives to obtain real positives, i.e., \mathbf{P}_i . A predictor q_{θ} projects \mathbf{H}^{θ} to \mathbf{Z}^{θ} , which is used to compute the final loss along with \mathbf{H}^{ξ} . Note that f_{θ} is updated via gradient descent of the loss, whereas f_{ξ} is updated via EMA of f_{θ} .

Method



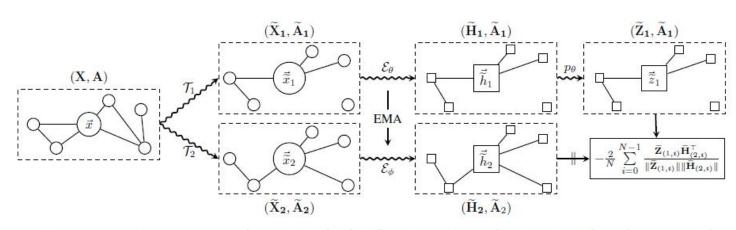
2022_AAAI_Augmentation-Free Self-Supervised Learning on



2021_ICLR_Large-Scale Representation Learning on Graphs via

(2)

Method



$$\mathbf{G}_1 = (\widetilde{\mathbf{X}}_1, \widetilde{\mathbf{A}}_1)$$
 and $\mathbf{G}_2 = (\widetilde{\mathbf{X}}_2, \widetilde{\mathbf{A}}_2)$

node feature masking and edge masking

$$\widetilde{\mathbf{H}}_1 \coloneqq \mathcal{E}_{\theta}(\widetilde{\mathbf{X}}_1, \widetilde{\mathbf{A}}_1) \qquad \widetilde{\mathbf{H}}_2 \coloneqq \mathcal{E}_{\phi}(\widetilde{\mathbf{X}}_2, \widetilde{\mathbf{A}}_2)$$
 $\widetilde{\mathbf{Z}}_1 \coloneqq p_{\theta}(\widetilde{\mathbf{H}}_1)$

$$\ell(\theta, \phi) = -\frac{2}{N} \sum_{i=0}^{N-1} \frac{\widetilde{\mathbf{Z}}_{(1,i)} \widetilde{\mathbf{H}}_{(2,i)}^{\top}}{\|\widetilde{\mathbf{Z}}_{(1,i)}\| \|\widetilde{\mathbf{H}}_{(2,i)}\|}$$
(1)

Figure 1: Overview of our proposed BGRL method. The original graph is first used to derive two different semantically similar views using augmentations $\mathcal{T}_{1,2}$. From these, we use encoders $\mathcal{E}_{\theta,\phi}$ to form online and $\theta \leftarrow \text{optimize}(\theta, \eta, \partial_{\theta} \ell(\theta, \phi))$, target node embeddings. The predictor p_{θ} uses the online embedding $\widetilde{\mathbf{H}}_1$ to form a prediction $\widetilde{\mathbf{Z}}_1$ of the target embedding $\widetilde{\mathbf{H}}_2$. The final objective is then computed as the cosine similarity between $\widetilde{\mathbf{Z}}_1$ and $\widetilde{\mathbf{H}}_2$, flowing gradients only through \mathbf{Z}_1 . The target parameters ϕ are updated as an exponentially moving average of θ .

$$\phi \leftarrow \tau \phi + (1 - \tau)\theta,\tag{3}$$

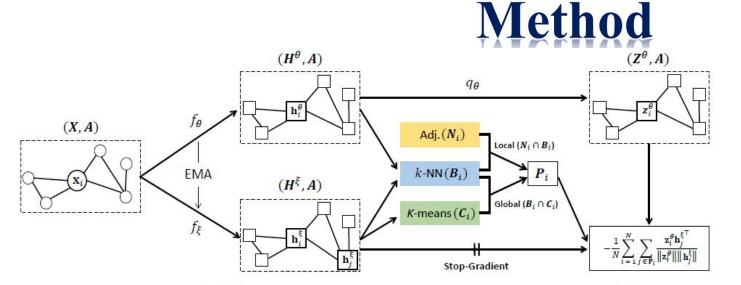


Figure 2: The overall architecture of AFGRL. Given a graph, f_{θ} and f_{ξ} generate node embeddings \mathbf{H}^{θ} and \mathbf{H}^{ξ} both of which are used to obtain k-NNs for node v_i , i.e., \mathbf{B}_i . Combining it with \mathbf{N}_i , we obtain local positives, i.e., $\mathbf{B}_i \cap \mathbf{N}_i$. To obtain global positives for node v_i , K-means clustering is performed on \mathbf{H}^{ξ} , and the result \mathbf{C}_i is combined with \mathbf{B}_i , i.e., $\mathbf{B}_i \cap \mathbf{C}_i$. Finally, we combine local and global positives to obtain real positives, i.e., \mathbf{P}_i . A predictor q_{θ} projects \mathbf{H}^{θ} to \mathbf{Z}^{θ} , which is used to compute the final loss along with \mathbf{H}^{ξ} . Note that f_{θ} is updated via gradient descent of the loss, whereas f_{ξ} is updated via EMA of f_{θ} .

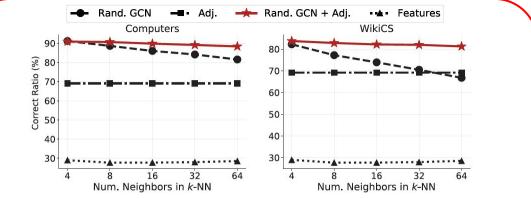


Figure 3: Analysis on the ratio of its neighboring nodes being the same label as the query node across different ks.

$$\mathbf{H}^{\theta} = f_{\theta}(\mathbf{X}, \mathbf{A})$$
 online encoder $f_{\theta}(\cdot)$

$$\mathbf{H}^{\xi} = f_{\xi}(\mathbf{X}, \mathbf{A})$$
 target encoder $f_{\xi}(\cdot)$

$$sim(v_i, v_j) = \frac{\mathbf{h}_i^{\theta} \cdot \mathbf{h}_j^{\xi}}{\|\mathbf{h}_i^{\theta}\| \|\mathbf{h}_j^{\xi}\|}, \forall v_j \in \mathcal{V}$$
 (1)

Capturing Local Structural Information

 $H_{Rand-GCN} = Rand-GCN(X, A)$

Rand.GCN + Adj

$$\mathbf{B}_i \cap \mathbf{N}_i$$
 locality = knn_neighbor $*$ adj

Capturing Global Semantics K-means

$$\mathbf{C}_i = \{v_j | v_j \in G_{c(\mathbf{h}_i^{\xi})}\}$$

 $B_i \cap C_i$

$$\mathbf{P}_i = (\mathbf{B}_i \cap \mathbf{N}_i) \cup (\mathbf{B}_i \cap \mathbf{C}_i) \tag{2}$$

$$\mathcal{L}_{\theta,\xi} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{v_j \in \mathbf{P}_i} \frac{\mathbf{z}_i^{\theta} \mathbf{h}_j^{\xi \top}}{\|\mathbf{z}_i^{\theta}\| \|\mathbf{h}_j^{\xi}\|}, \tag{3}$$

	WikiCS	Computers	Photo	Co.CS	Co.Physics
Sup. GCN	77.19 ± 0.12	86.51 ± 0.54	92.42 ± 0.22	93.03 ± 0.31	95.65 ± 0.16
Raw feats.	71.98 ± 0.00	73.81 ± 0.00	78.53 ± 0.00	90.37 ± 0.00	93.58 ± 0.00
node2vec	71.79 ± 0.05	84.39 ± 0.08	89.67 ± 0.12	85.08 ± 0.03	91.19 ± 0.04
DeepWalk	74.35 ± 0.06	85.68 ± 0.06	89.44 ± 0.11	84.61 ± 0.22	91.77 ± 0.15
DW + feats.	77.21 ± 0.03	86.28 ± 0.07	90.05 ± 0.08	87.70 ± 0.04	94.90 ± 0.09
DGI	75.35 ± 0.14	83.95 ± 0.47	91.61 ± 0.22	92.15 ± 0.63	94.51 ± 0.52
GMI	74.85 ± 0.08	82.21 ± 0.31	90.68 ± 0.17	OOM	OOM
MVGRL	77.52 ± 0.08	87.52 ± 0.11	91.74 ± 0.07	92.11 ± 0.12	95.33 ± 0.03
GRACE	77.97 ± 0.63	86.50 ± 0.33	92.46 ± 0.18	92.17 ± 0.04	OOM
GCA	77.94 ± 0.67	87.32 ± 0.50	92.39 ± 0.33	92.84 ± 0.15	OOM
BGRL	76.86 ± 0.74	89.69 ± 0.37	93.07 ± 0.38	92.59 ± 0.14	95.48 ± 0.08
AFGRL	77.62 ± 0.49	89.88 ± 0.33	93.22 ± 0.28	93.27 ± 0.17	95.69 ± 0.10

Table 2: Performance on node classification (OOM: Out of memory on 24GB RTX3090).

		GRACE	GCA	BGRL	AFGRL
WikiCS Computers	NMI	0.4282	0.3373	0.3969	0.4132
	Hom.	0.4423	0.3525	0.4156	0.4307 0.5520
	Hom.	0.5222	0.5816	0.5869	0.6040
Photo Co.CS	NMI	0.6513	0.6443	0.6841	0.6563
	Hom.	0.6657	0.6575	0.7004	0.6743 0.7859
	Hom.	0.7909	0.7965	0.7732	0.7659
Co.Physics	NMI Hom.	OOM OOM	OOM OOM	0.5568 0.6018	0.7289 0.7354

Table 3: Performance on node clustering in terms of NMI and homogeneity.

lñ.	1.53	GRACE	GCA	BGRL	AFGRL
WikiCS	Sim@5	0.7754	0.7786	0.7739	0.7811
	Sim@10	0.7645	0.7673	0.7617	0.7660
Computers	Sim@5	0.8738	0.8826	0.8947	0.8966
	Sim@10	0.8643	0.8742	0.8855	0.8890
Photo	Sim@5	0.9155	0.9112	0.9245	0.9236
	Sim@10	0.9106	0.9052	0.9195	0.9173
Co.CS	Sim@5	0.9104	0.9126	0.9112	0.9180
	Sim@10	0.9059	0.9100	0.9086	0.9142
Co.Physics	Sim@5	OOM	OOM	0.9504	0.9525
	Sim@10	OOM	OOM	0.9464	0.9486

Table 4: Performance on similarity search. (Sim@n: Average ratio among n nearest neighbors sharing the same label as the query node.)

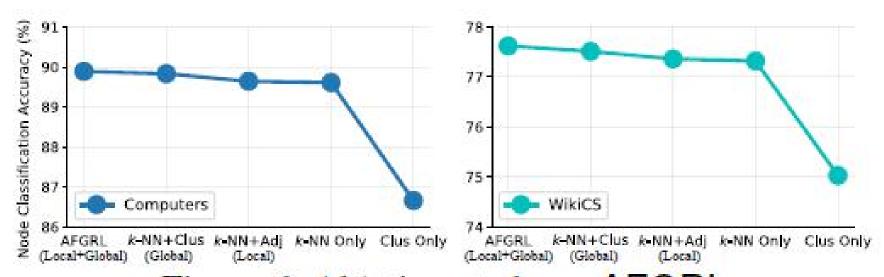


Figure 6: Ablation study on AFGRL.

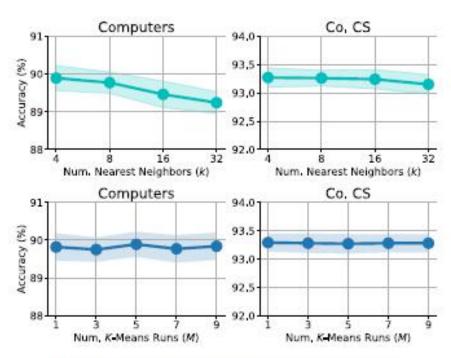


Figure 5: Sensitivity analysis.

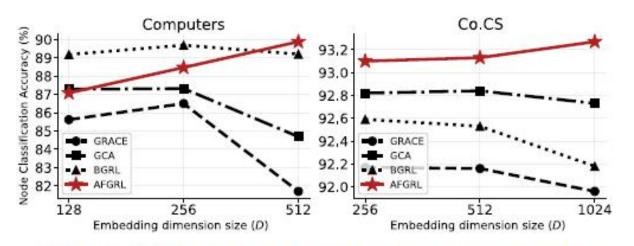


Figure 7: Effect of embedding dimension size (D).

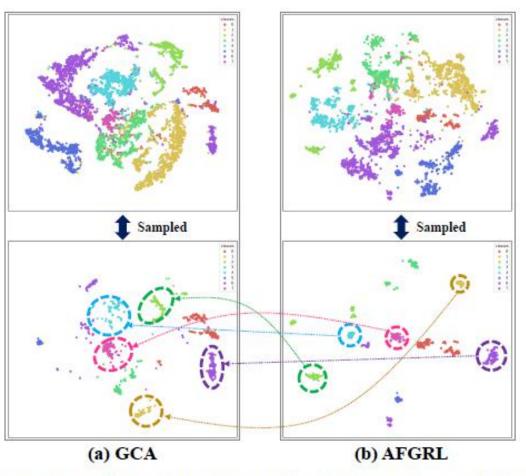


Figure 8: t-SNE embeddings of nodes in *Photo* dataset.

Thank you!